A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material

نویسندگان

  • Syed Zulqarnain Haider
  • Hafeez Anwar
  • Mingqing Wang
چکیده

Hole transport material (HTM) plays an important role in the efficiency and stability of perovskite solar cells (PSCs). Spiro-MeOTAD, the commonly used HTM, is costly and can be easily degraded by heat and moisture, thus offering hindrance to commercialize PSCs. There is dire need to find an alternate inorganic and stable HTM to exploit PSCs with their maximum capability. In this paper, a comprehensive device simulation is used to study various possible parameters that can influence the performance of perovskite solar cell with CuI as HTM. These include the effect of doping density, defect density and thickness of absorber layer, along with the influence of diffusion length of carriers as well as electron affinity of electron transport layer (ETM) and HTM on the performance of PSCs. In addition, hole mobility and doping density of HTM is also investigated. CuI is a p-type inorganic material with low cost and relatively high stability. It is found that concentration of dopant in absorber layer and HTM, the electron affinity of HTM and ETM affect the performance of solar cell minutely, while cell performance improves greatly with the reduction of defect density. Upon optimization of parameters, power conversion efficiency for this device is found to be 21.32%. The result shows that lead-based PSC with CuI as HTM is an efficient system. Enhancing the stability and reduction of defect density are critical factors for future research. These factors can be improved by better fabrication process and proper encapsulation of solar cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells

Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...

متن کامل

Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency.

Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic ...

متن کامل

Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of usin...

متن کامل

Photoinduced processes in lead iodide perovskite solid-state solar cells

Organic-inorganic hybrid systems based on lead halide compounds have recently encountered considerable success as light absorbers in solid-state solar cells. Herein we show how fundamental mechanistic processes in mesoporous oxide films impregnated with CH3NH3PbI3 can be investigated by time resolved techniques. In particular, charge separation reactions such as electron injection into the tita...

متن کامل

Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells

Lead halide perovskites have recently been used as light absorbers in hybrid organic–inorganic solid-state solar cells, with efficiencies as high as 15% and open-circuit voltages of 1 V. However, a detailed explanation of the mechanisms of operation within this photovoltaic system is still lacking. Here, we investigate the photoinduced charge transfer processes at the surface of the perovskite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018